Heatless Desiccant Air Dryers TW Series

Specifications

Inlet or Ambient Air Temperature	e 120°F (49°C) maximum
	50°F (10°C) minimum inlet
Operating Pressure	80 PSIG (5.5 bar) minimum
Working Pressure	150 PSIG (10.5 bar) maximum
Pressure Drop At Rated Flow	Less than 5 PSI (0.34 bar)
Primary Voltage	120V/1ph/60Hz

The TW Series Heatless Desiccant Air Dryers remove water vapor from compressed air through a process known as pressure swing adsorption. Pressure dewpoints of -40°F (-40°C) standard are attained by directing the flow of saturated compressed air over a bed of desiccant.

Features

Allen-Bradley® PLC

- Two year dryer warranty (parts and labor)
- · 4 line display
- NEMA 4X enclosure
- · Selectable cycles

Switching Valves

 Five year switching valve warranty from manufacturer's defects (see warranty policy)

Factory Installed Filtration

- · Single point connection for system integrity
- · Differential pressure gauges for element condition
- Filter drains

Regulated Purge

- Factory set
- Optimum purge regardless of operating pressure
- Repressurization circuit

Heatless Desiccant Air Dryers, Filtration comes with Dryer unit as standard.

Part number	Capacity SCFM @ 100 psig	Approximate purge scfm	Dryer air port in/out (NPT)	Pre-filter	After-filter
TW41BN14NNN	40	6	1/2"	AAP015CFNI	AOP015CNFI
TW56BN14NNN	55	8	3/4"	AAP020DFNI	AOP020DNFI
TW76BN14NNN	75	11	3/4"	AAP025DNFI	AOP025DNMI
TW101BN14NNN	100	15	1"	AAP025ENFI	AOP025ENMI
TW131BN14NNN	130	20	1"	AAP025ENFI	AOP025ENMI
TW201BN14NNN	200	30	1-1/2"	AAP030GNFI	AOP030GNMI
TW251BN14NNN	250	38	1/1/2"	AAP035GNFI	AOP035GNMI
TW301BN14NNN	300	45	1-1/2"	AAP035GNFI	AOP035GNMI
TW401BN14NNN	400	60	2"	AAP040HNFI	AOP040HNMI
TW501BN14NNN	500	75	2"	AAP045INFI	AOP045INMI
TW601BN14NNN	600	90	2"	AAP045INFI	AOP045INMI
TW801BN14NNN	800	120	2"	AAP050INFI	AOP050INMI

- Easy to maintain and serviceValve(s) may be serviced without
- Valve(s) may be serviced without opening electrical enclosure
- · No hard wiring required
- · Visual indication of valve activation
- Valve labeling

Additional Features

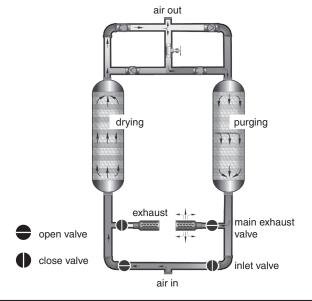
- · Separate tower pressure gauges
- OSHA approved mufflers with safety relief
- ASME/CRN vessels (TW101 and larger)
- · Desiccant fill and drain ports
- · Safety relief valves
- · Stainless steel diffuser screens
- · CycleLoc® demand control
- · Control air line filter
- ETL listed (UL/CSA standards)
- LED din connector(s) all solenoid valves
- 120 VAC power (other options available consult factory)
- · Power cord with basic controller
- · Power din connector with advanced controller
- · Power On/Off switch with advanced controller
- · Steel base TW1001 and larger

Options

- PowerLoc Energy Demand Control (TW41 TW801) optional
- All NEMA classifications
- · Control air tubing stainless steel
- Low ambient package (-20°F to +40°F air temperature)
- Instrumentation
- Locally mounted pressure and temperature gauges at inlet and outlet
- Pneumatic controls
- ASME B31.3 piping
- Corrosion allowance
- High pressure applications: 200 psig design & 250 psig design adders are available

System Integrity

The TW Series Heatless Desiccant Air Dryers remove water vapor from compressed air through a process known as Pressure Swing Adsorption. Pressure dewpoints ranging from -40°F (-40°C) are attained by directing the flow of saturated compressed air over a bed of desiccant.


The most commonly used desiccant is activated alumina, a spherical shaped, hygroscopic material, selected for its consistent size, shape and extreme surface to mass ratio. This physically tough and chemically inert material is contained in two separate but identical pressure vessels commonly referred to as "dual" or "twin" towers.

As the saturated compressed air flows up through the "on-line" tower, its moisture content adheres to the surface of the desiccant. The dry compressed air is then discharged from the chamber into the distribution system.

An Allen-Bradley® PLC controller automatically cycles the flow of compressed air between the towers while the "on-line" tower is drying, the "off-line" tower is regenerating. Regeneration, sometimes referred to as purging, is the process by which moisture accumulated during the "on-line" cycle is stripped away during the "off-line" cycle. As dry low pressure purge air flows gently through the regenerating bed, it attracts the moisture that had accumulated on the surface of the desiccant during the drying cycle and exhausts it to the atmosphere.

To protect the desiccant bed from excess liquid, all TW Series Heatless Air Dryers are designed to work with the natural pull of gravity. By directing the saturated air into the bottom of the "on-line" tower and flowing up through the bed, liquid condensate caused by system upset, is kept away from the desiccant and remains at the bottom of the tower where it can be easily exhausted during the regeneration cycle. Counter flow purging ensures optimum performance by keeping the driest desiccant at the discharge end of the dryer.

Heatless dryers in general are the most reliable and least expensive of all desiccant type dryers. The Airtek TW Series Heatless Desiccant Air Dryers are more energy efficient than competitors thanks to standard features such as: variable cycle control, CycleLoc® and regulated purge flow.

Basic Controller

(Standard on Models TW41 - TW801)

- Allen-Bradley® PLC
- Nema 4X enclosure
- · LCD user interface
- · Four line digital display features:
 - Tower drying indication
 - Tower regenerating indication
 - Run status
 - Time remaining in cycle
- Selectable cycle settings
- Programmable drain timer (drain on, time and test)
- Compressor demand via external dry contact (CycleLoc®)
- · Power ON/OFF switch
- · Step-through regeneration for maintenance
- · Cycle counter
- · Hours of operation

Advanced Controller

(Optional on Models TW41-801)

- Allen-Bradley® PLC
- Powerloc® Energy Demand System
 - Energy savings percentage
 - Hours in power save
- Nema 4X enclosure
- 3.5" LCD user interface
- Dew point sensor input (-148°F to 68°F)
- Optional 4-20 mA output for remotely monitoring dew point
- Tower pressure sensors
- · Inlet pressure and temperature sensors
- Compressor demand via external dry contact (CycleLoc®)
- Modbus/TCP communications via standard ethernet port
- Modbus RTU communications via optional RS232/485 port (Using external gateway device)
- SD card slot for accessing historical data and alarm information
- · Selectable cycle settings
- Programmable drain timer (drain on, time and test)
- · User selectable alarms with common alarm relay
 - High inlet temperature
 - Low inlet pressure
 - Tower failed to blow down (switch failure)
 - Tower failed to pressurize
 - High dew point
 - Sensor failure for all sensors
 - Switch failure
 - Inlet filter pressure
- Filter maintenance timer & alarm
- Clogged muffler maintenance and alarm
- Power ON/OFF switch
- · Alarm log stores most recent alarms
- · Flashes green when in energy savings mode
- · Flashes red when an alarm is present
- Dry contact for common alarm

PowerLoc® Energy Management System

(Optional on Models TW41-801)**

Energy savings of up to 80% can be achieved with the proven PowerLoc® energy management system.

Regeneration requirements are dependent on flow, pressure and temperature. The

PowerLoc® system allows the cost of drying compressed air to be matched exactly to your plant conditions.

PowerLoc® controls the drying cycle by continuously reacting to the loading under which the dryer is operating and minimizes the energy input required.

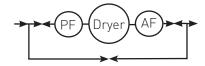
As dryers rarely operate at full rated capacity all of the time (eg. during shift work and periods of low demand), this energy management system can provide considerable savings.

The Advanced Controller is designed to accomodate Parker Airtek's PowerLoc Energy Management System. Flashes green when in energy saving mode.

High Performance Components

Poppet Valve

TW41 - TW801


PTFE seal

· Air activated, spring return

Visual position indicator on exhaust valves

- ANSI Class VI shutoff
- · Long service life
- · Repair kits available
- 5 year valve warranty

Filter Package Schematic

Package "B"

(Standard TW41 - TW801)

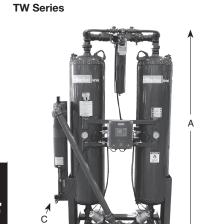
Includes dryer with factory installed pre-filter and after-filter with system bypass

Flow correction factors

= "Most Popular"

Capacities are based upon:

- Maximum inlet air or ambient air temperature 120°F (49°C)
- Maximum working pressure: 150 psig (10.5 bar g) standard units for high maximum working pressure are available
- Minimum operating pressure: 80 psig (5.5 bar g)


Correction Factors

To obtain drying capacity at new conditions: (nominal capacity) x C1 x C2

Temperature Correction Fact	or							
Maximum inlet temperature (C1)	°F	90	95	100	105	110	115	120
	°C	32	35	38	41	43	46	49
	CF	1.17	1.15	1.00	0.87	0.76	0.66	0.58
Pressure Correction Factor								_
Minimum inlet pressure (C2)	psi g	80	90	100	110	120	130	
	bar g	5.5	6.2	6.9	7.6	8.3	9.0	
	CF	0.83	0.91	1.00	1.09	1.17	1.26	

Flows are at 100 psig inlet pressure, 100°F inlet temperature, and 100°F ambient temperature. Weight includes desiccant dryer with basic controller FLA 2 amps, advanced controller FLA 3 amps.

Heatless Desiccant Air Dryers

V		V
	— B — →	
Inch (mm)		

Part number	A (length)	B (width)	C (depth)	Weight lbs. (kg)
TW41BN14NNN	49 (1245)	21 (533)	25 (635)	190 (86)
TW56BN14NNN	65 (1651)	22 (559)	31 (787)	230 (104)
TW76BN14NNN	80 (2032)	34 (864)	29 (737)	384 (174)
TW101BN14NNN	79 (2007)	36 (914)	30 (762)	468 (212)
TW131BN14NNN	79 (2007)	36 (914)	30 (762)	496 (225)
TW201BN14NNN	81 (2057)	42 (1067)	34 (864)	692 (314)
TW251BN14NNN	81 (2057)	45 (1143)	36 (914)	776 (352)
TW301BN14NNN	81 (2057)	45 (1143)	36 (914)	796 (361)
TW401BN14NNN	83 (2108)	48 (1219)	41 (1041)	1626 (738)
TW501BN14NNN	83 (2108)	51 (1295)	43 (1092)	1735 (787)
TW601BN14NNN	84 (2134)	50 (1270)	44 (1118)	1740 (789)
TW801BN14NNN	88 (2235)	56 (1422)	45 (1143)	2120 (962)

Repair and Service Kits

Dryer model	Pre-filter	Pre-filter element	After-filter	After-filter element
TW41	AAP015CFNI	P015AA	AOP015CNFI	P015AO
TW56	AAP020DFNI	P020AA	AOP020DNFI	P020AO
TW76	AAP025DNFI	P025AA	AOP025DNMI	P025AO
TW101	AAP025ENFI	P025AA	AOP025ENMI	P025AO
TW131	AAP025ENFI	P025AA	AOP025ENMI	P025AO
TW201	AAP030GNFI	P030AA	AOP030GNMI	P030AO
TW251	AAP035GNFI	P035AA	AOP035GNMI	P035AO
TW301	AAP035GNFI	P035AA	AOP035GNMI	P035AO
TW401	AAP040HNFI	P040AA	AOP040HNMI	P040AO
TW501	AAP045INFI	P045AA	AOP045INMI	P045AO
TW601	AAP045INFI	P045AA	AOP045INMI	P045AO
TW801	AAP050INFI	P050AA	AOP050INMI	P050AO

F30